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Abstract

This paper is concerned with the ensemble statistics of the response to harmonic excitation of a single
dynamic system such as a plate or an acoustic volume. Random point process theory is employed, and
various statistical assumptions regarding the system natural frequencies are compared, namely: (i) Poisson
natural frequency spacings, (ii) statistically independent Rayleigh natural frequency spacings, and (iii)
natural frequency spacings conforming to the Gaussian orthogonal ensemble (GOE). The GOE is found to
be the most realistic assumption, and simple formulae are derived for the variance of the energy of the
system under either point loading or rain-on-the-roof excitation. The theoretical results are compared
favourably with numerical simulations and experimental data for the case of a mass loaded plate.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The response of a complex dynamic system at high frequencies can be predicted by using
statistical energy analysis (SEA) [1], in which the system is considered to be an assembly of
‘‘subsystems’’. By considering power conservation, the method leads to a prediction of the mean
vibrational energy of each subsystem. This mean value is strictly an average over an ensemble of
systems with random parameters, although it is often justifiable to reinterpret this as a frequency
average for any one particular system. There is much interest in predicting not only the mean
energy of each subsystem but also the higher order statistics, such as the variance, but this is a
highly complex task and as yet there is no reliable way in which it can be done. In this paper a
number of the underlying issues are investigated for the relatively simple case of a single
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subsystem, such as a plate or an acoustic volume, with the aim of predicting the ensemble variance
at a fixed frequency.
Some of the earliest work on the statistics of the response of a single subsystem occurred in the

field of room acoustics. For example, Schroeder [2] considered the point-to-point transfer
function of an acoustic volume, and concluded that at a sufficiently high frequency the real and
imaginary parts are uncorrelated Gaussian random variables of equal variance. This implies that
the modulus squared transfer function has an exponential distribution, from which it follows that
the standard deviation is equal to the mean value. This problem was reconsidered by Lyon [3],
under the assumption that the system natural frequencies form a Poisson point process. The
standard deviation of the modulus squared transfer function was found to be greater than that
predicted by Schroeder [2], but to reduce to the Schroeder result at very high frequencies. Lyon [3]
also considered the statistics of the energy of a subsystem subjected to point loading, and
furthermore considered the effect of non-Poisson natural frequencies by employing an alternative
empirically based model. This work was extended by Davy [4] to the case where there are a
specified number of excitation points and the response is averaged over a specified number of
receive points. The assumptions made by Lyon [3] and Davy [4] regarding the statistics of the
natural frequencies are now known to be invalid for most systems, and there has been much
subsequent fundamental work, reported mainly in the physics literature, regarding the statistics of
the spacings between neighbouring natural frequencies.
Work on random matrix theory has investigated in detail the statistical properties of the natural

frequencies of a particular type of random matrix known as the Gaussian Orthogonal Ensemble
(GOE) [5]. The GOE concerns a symmetric matrix whose entries are Gaussian, zero mean, and
statistically independent, with the off-diagonal entries having a common variance, and the
diagonal entries having twice this variance. It is known that the spacings between the eigenvalues
have a Rayleigh distribution (referred to as the Wigner distribution in the random matrix
literature). This contrasts with the exponential distribution that would be obtained were the
natural frequencies to form a Poisson point process. A surprising fact has emerged from
numerical and experimental studies: most physical systems have natural frequencies that conform
to the GOE statistics, even though the random matrices that govern their behaviour have no
obvious direct connection with the GOE. This has been shown experimentally for a metal block
by Weaver [6], for a quartz block by Ellegaard et al. [7], and for plates by Bertlesen et al. [8];
furthermore, much numerical evidence is quoted by Mehta [5]. The GOE statistics no longer apply
however when the system has ‘‘symmetries’’—in fact if the system has many symmetries (and the
natural frequencies from all symmetry classes are superposed) then the Poisson spacing statistics
are obtained, and this situation applies to a perfectly rectangular simply supported plate or a
perfectly box-shaped room. In this case the Lyon [3] statistical assumptions are correct, but any
slight perturbation of the system will disturb the symmetry and result in GOE statistics. Thus
GOE statistics are to be expected for practical systems, and Weaver [9] extended the work of Lyon
[3] and Davy [4] to this case, making certain simplifying assumptions in the process. These
assumptions were lifted by Lobkis et al. [10] for the case of the point-to-point transfer function,
although some discrepancy with experimental measurements was reported.
One effect of the approximations employed by Weaver [9] is that the subsystem energy is

predicted to have zero variance when rain-on-the-roof excitation is employed. Since rain-on-the-
roof excitation is commonly assumed in SEA this issue requires further investigation. In the
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present work the statistics of the energy of a subsystem is investigated for both point loading and
rain-on-the-roof excitation, and for comparison the point-to-point transfer function is also briefly
considered. Three analytical models are investigated: Poisson natural frequency spacings,
statistically independent Rayleigh natural frequency spacings, and full GOE natural frequency
statistics. The separate consideration of independent Rayleigh spacings allows the effect of the
spacing correlations predicted by the GOE to be investigated. The analytical models are compared
with numerical simulations and experimental results for a mass loaded plate, and the GOE model
is found to provide very good predictions.

2. Energy statistics

2.1. General considerations

For a proportionally damped dynamic system, the transfer function H at frequency o between
a drive point at x0 and a response point at x can be written in the form of a modal sum, so that

Hðo; x0;xÞ ¼
X

n

fnðxÞfnðx0Þ
ðo2

n � o2 þ iZoonÞ
; ð1Þ

where fn is the nth mode shape (scaled to unit generalized mass), on is the nth natural frequency
and Z is the loss factor. The following analysis is concerned with the statistics of the response of a
random system, so that both the mode shapes and the natural frequencies are random quantities
when viewed across an ensemble of random structures. A brief analysis of the point-to-point
transfer function is presented in Section 3, but the main concern is with the statistics of the time
averaged (in the sense of being averaged over a cycle of harmonic vibration) kinetic energy density
of the system, which for the case of a unit point load applied at x0 is given by

TðoÞ ¼
o2

4R

Z
R

rðxÞ Hðo;x0; xÞj j2 dx: ð2Þ

Here R is the area (or equivalent) of the system and rðxÞ is the mass density in appropriate units.
By substituting Eq. (1) into Eq. (2), the resulting double summation can be reduced to a single
summation by applying mode shape orthogonality, which yields

TðoÞ ¼
X

n

o2an

½ðo2
n � o2Þ2 þ ðZoonÞ

2�
; ð3Þ

where

an ¼ f2
nðx0Þ=4R: ð4Þ

For different types of loading, for example multiple point forces or rain-on-the-roof excitation,
Eq. (3) will still apply but Eq. (4) will be modified. The following analysis is applicable to a general
set of coefficients an; and thus Eq. (4) will not be assumed in general.
Clearly the statistical distribution of TðoÞ as given by Eq. (3) is determined by the statistics of

the natural frequencies of the system and also by the statistics of the numerators an; and this
problem has been studied in detail by Lyon [3]. Apart from the first few modes, it is reasonable to
assume that for each mode the modal bandwidth is small in comparison to the natural frequency,
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in which case the following approximation can be applied:

ðo2
n � o2Þ2 þ ðZoonÞ

2E4o2ðon � oÞ2 þ ðZo2Þ2: ð5Þ

Eq. (3) can then be expressed in the form

TðoÞ ¼
X

n

angðon � oÞ; ð6Þ

gðon � oÞ ¼
o2

½4o2ðon � oÞ2 þ ðZo2Þ2�
: ð7Þ

The main reason for rewriting Eq. (3) in the form of Eq. (6) is that the latter equation (at fixed o)
is more amenable to analysis by using random point process theory [11,12] and three distinct cases
are considered in what follows.

2.2. Poisson natural frequency spacings

Perhaps the simplest assumption regarding the system natural frequencies is that they form a
Poisson point process [12]; this means that the spacings between successive natural frequencies are
statistically independent and have an exponential distribution. In this case, the statistics of Eq. (6)
can be derived by using Campbell’s Theorem [12,13]. In particular, the mean and variance of T
have the form

mT ¼ E½T � ¼ 2E½an�
Z

N

0

ngðOÞ dO; ð8Þ

s2T ¼ Var½T � ¼ 2E½a2n�
Z

N

0

ng2ðOÞ dO; ð9Þ

where n is the modal density of the system, and it has been assumed that the coefficients an are
identically distributed and statistically independent of the natural frequencies. Here the symbol
E½ � is used to represent an average taken over the ensemble of random structures at a fixed
excitation frequency. Evaluating the integrals in Eqs. (8) and (9) gives

mT ¼
E½an�pn
2Zo

; s2T ¼
E½a2

n�pn
4Z3o3

: ð10; 11Þ

The relative standard deviation, rT say, is therefore

r2T ¼ ðsT=mT Þ
2 ¼ a=pm; m ¼ oZn; ð12; 13Þ

where m is the modal overlap factor, and a is given by

a ¼ E½a2
n�=E½an�2: ð14Þ

Eqs. (12)–(14) are a restatement of Eq. (23) of Ref. [3].
Eqs. (8) and (9) represent the first two cumulants of the energy T ;more generally, an expression

for the jth cumulant kj can be found by employing Eq. (4-88) of Lin [12], which gives

kj ¼ 2E ½aj
n�
Z

N

0

ngjðOÞ dO: ð15Þ
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Substituting Eq. (7) into this expression then yields

kj ¼ E½aj
n�
ð2j � 2Þ!

½ðj � 1Þ!�2
2�2jþ1pnðoZÞ2j�1: ð16Þ

When normalized by the standard deviation sT this result becomes

kj=s
j
T ¼

E½aj
n�

E½a2
n�

j=2

ð2j � 2Þ!

½ðj � 1Þ!�2
21�jðpmÞ�j=2þ1: ð17Þ

The probability density function of the energy can be expanded in the form of an Edgeworth
series, in which the first term is a Gaussian distribution and the amplitudes of the subsequent
terms depend upon the normalized cumulants kj=s

j
T ; jX3 [13]. Clearly, the normalized cumulants

tend to zero with increasing modal overlap m; and this suggests that the energy might become
Gaussian at large m:However, the behaviour of E½aj

n� with increasing j is also a relevant issue, and
this in turn depends upon the type of loading considered. Furthermore, Eq. (17) is based on
Poisson natural frequency spacings and this is of doubtful validity for many practical systems, as
discussed in what follows.
The Poisson process model adopted in the present section is analytically convenient, but of

limited practical relevance. This is because ‘‘repulsion’’ between modes leads to a low probability
of very closely spaced natural frequencies, whereas the Poisson exponential model of the modal
spacing implies that close spacings are highly probable. Lyon [3] investigated this issue by
considering a spacing density function proportional to z expð�nzÞ (the ‘‘nearest neighbour’’
distribution), where z is the natural frequency spacing; however it is now known that many
practical systems have a Rayleigh spacing distribution, in line with the Wigner surmise associated
with the GOE in random matrix theory [5]. Weaver [9] has derived an approximate expression for
the relative variance of the energy density based on GOE statistics, valid for the case of large
modal overlap, and the result has the form

r2T ¼
1

LN
þ

1

pm

K

N
þ 1�

1

N

� �
K

L
þ 1�

1

L

� �
�

2

LN
� 1

� �
; ð18Þ

where K is given by

K ¼ E½f4
n�=E½f2

n�
2 ð19Þ

and L and N are, respectively, the number of independent receiver and source positions used in
the calculation of the energy density (i.e., the energy density is averaged over L spatial points, and
there are N statistically independent point forces). The result can be compared directly with
Eq. (12) for the case of large L (i.e., the energy density is averaged over the whole system) and a
single point load (N ¼ 1), in which case an ¼ f2

n and a ¼ K : The result is

r2T ¼ ða� 1Þ=pm; ð20Þ

which clearly differs from Eq. (12). For the case where both L and N are large (i.e., the kinetic
energy density is averaged over the whole system, under rain-on-the-roof forcing) Eq. (18) breaks
down and predicts rT ¼ 0: The issue of non-Poisson natural frequency spacings is considered in
detail in the following sections, and an alternative to Eq. (18) is derived which covers the problem
case of large L and N. Firstly the case of statistically independent Rayleigh natural frequency
spacings is considered (Section 2.3), and the analysis is then extended to include the spacing
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correlations associated with the GOE (Section 2.4). It is known that most practical systems will
follow the GOE, and the case of independent Rayleigh natural frequency spacings is highly
unlikely to arise in practice; however a separate consideration of the latter case enables the role
and importance of spacing correlations to be clearly identified.

2.3. Statistically independent Rayleigh natural frequency spacings

Stratonovich [11] has considered the statistics of a sum in the form of Eq. (6) for the case where
the spacings between the points on are statistically independent but have any specified
distribution. The previous result for the mean of the sum, Eq. (8), still applies, but the variance
is modified. The original analysis by Stratonovich is limited to the case an ¼ 1; but this is extended
to the general case in what follows. If the random function xðoÞ is defined as

xðoÞ ¼
XN
j¼1

andðo� ojÞ; ð21Þ

where dðoÞ is the dirac delta function, then Eq. (6) can be rewritten as

TðoÞ ¼
Z

N

�N

gðo0 � oÞ xðo0Þ do0: ð22Þ

If the pulse sequence in Eq. (21) is a stationary random process, it follows that

ST ðyÞ ¼ F ðyÞj j2SxðyÞ: ð23Þ

Here ST ðyÞ is the spectral density of TðoÞ, and SxðyÞ is the spectral density of xðoÞ. The function
FðyÞ is the Fourier transform of gðOÞ; so that

FðyÞ ¼
Z

N

�N

gðo0 � oÞexpð�iyo0Þ do0: ð24Þ

Substituting Eq. (7) into Eq. (24) yields

FðyÞ ¼
p

2Zo
exp½�Zojyj=2� iyo�: ð25Þ

The spectral density SxðyÞ has been derived by Stratonovich [11] for the particular case an ¼ 1;
this analysis can readily be modified for the more general case to yield

SxðyÞ ¼
n
2p

� �
E½a2n� þ 2E½an�2Re

MðyÞ
1� MðyÞ

� �� �
; ð26Þ

where MðyÞ is the characteristic function associated with the probability density function of the
natural frequency spacings, pðzÞ; so that

MðyÞ ¼
Z

N

0

pðzÞexpðiyzÞ dz: ð27Þ

Eq. (26) does not include the delta function at the origin associated with the mean value of xðoÞ;
and thus it follows from Eq. (23) that the variance of the energy can be written as

s2T ¼ 2

Z
N

0

jFðyÞj2SxðyÞ dy: ð28Þ
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Given that the mean value of the energy is given by Eq. (10), the relative variance can be written
in the form

r2T ¼
1

pn

Z
N

0

aþ 2 Re
MðyÞ

1� MðyÞ

� �� �
expð�ZoyÞ dy; ð29Þ

where the spatial factor a is defined by Eq. (14). For Poisson natural frequency spacings pðzÞ is an
exponential function and hence MðyÞ ¼ ð1� iy=nÞ�1; in this case only the first term in Eq. (29)
makes a non-zero contribution and Eq. (12) is recovered, in agreement with the analysis of the
previous section. In contrast, if the Wigner surmise is adopted then the natural frequency spacings
have a Rayleigh distribution, in which case

pðzÞ ¼
z

b
exp �

z2

2b

� �
; ð30Þ

where b ¼ 2=ðpn2Þ: In this case MðyÞ can be expressed in terms of the incomplete gamma function
P; so that

MðyÞ ¼ 1� ijyj

ffiffiffiffiffiffi
pb

2

r
exp �

1

2
y2b

� �
1� P

1

2
;�

y2b
2

� �� �
ð31Þ

and Eq. (29) can then be evaluated by numerical integration, given a value of the factor a. The
determination of a is discussed in the Section 2.5.
Eq. (29) yields the relative variance of the response for the case where the spacings between the

natural frequencies have a Rayleigh distribution and are statistically independent. The Rayleigh
distribution is consistent with the statistics yielded by the GOE in random matrix theory, but it
should be noted that the GOE does not predict that the spacings are statistically independent.
Eq. (18), given by Weaver [9], and Eq. (29) are therefore based on different assumptions, and the
following section considers a more complete model of the GOE spacing statistics.

2.4. GOE natural frequency statistics

The analysis of the previous section considered the case of statistically independent Rayleigh
natural frequency spacings, which partially captures the spacing statistics predicted by the GOE,
although the correlations between the spacings are neglected. The effect of these correlations can
be included by modifying the result for the spectrum of the random process xðoÞ; Eq. (26). Firstly,
it can be noted that Lin (Ref. [12], Eq. (4-101) has given a general expression for the spectrum of
xðoÞ which, when adjusted to give zero mean, has the form

SxðyÞ ¼ ð1=2pÞ fE½a2n�g1 þ E½an�2G2ðyÞg; ð32Þ

where

G2ðyÞ ¼
Z

N

�N

g2ðoÞexpð�iyoÞ do: ð33Þ

Here g1 and g2 are the first two cumulant functions of the random point process. The first, g1; is
the mean rate at which natural frequencies occur, i.e., the modal density n: The second, g2; is
determined by the higher order statistics of the frequency spacings. In brief, g2 ¼ f2 � n2, where
f2ðoÞ do1 do2 is the probability that a natural frequency occurs in each of two small frequency
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intervals do1 and do2 that are separated by a frequency o: The function g2 is defined in a very
similar way to the ‘‘two-level cluster’’ function Y2 that is employed in random matrix theory [5].
In fact, apart from a sign change, Y2 is the value taken by g2 when the point process is scaled to
give g1 ¼ 1; so that

g2ðoÞ ¼ �n2Y2ðnoÞ: ð34Þ

The Fourier transform of the two-level cluster function is given by Mehta [5] as

bðyÞ ¼
Z

N

�N

Y2ðrÞexpð�2piryÞ dr ¼
1� 2jyj þ jyjlnð1þ 2jyjÞ; jyjp1;

�1þ jyjln
2jyj þ 1

2jyj � 1

� �
; jyjX1

8><
>: ð35Þ

and thus

G2ðyÞ ¼ �nbðy=2pnÞ: ð36Þ

Eqs. (10), (28), (32) and (36) then lead to an expression for the relative variance in the form

r2T ¼
1

pn

Z
N

0

fa� bðy=2pnÞgexpð�ZoyÞ dy: ð37Þ

The integral involved in the above equation can be evaluated to yield

r2T ¼
1

pm
a� 1þ

1

2pm
½1� expð�2pmÞ� þ E1ðpmÞ coshðpmÞ �

1

pm
sinh ðpmÞ

� �� �
; ð38Þ

where m is the modal overlap factor, and E1 is the exponential integral [14]

E1ðxÞ ¼
Z

N

x

expð�tÞ
t

dt: ð39Þ

The exponential integral can be expanded for large arguments (formula 5.1.51 of Ref. [14]) to
yield a simple approximation to Eq. (38) in the form

r2TEða� 1Þ=pm þ 1=ðpmÞ2: ð40Þ

This approximation is correct up to second order in 1=ðpmÞ; i.e., the next term in the series is of
order 1=ðpmÞ3; and thus the expansion can be expected to be accurate down to fairly small values
of m; say m > 0:6: For the case of a point load (a ¼ K), the first term in Eq. (40) agrees with the
result due to Weaver [9], Eq. (20), and the relative variance is proportional predominantly to
1=ðpmÞ: For rain on the roof forcing (a ¼ 1), Eq. (40) states that the relative variance has a quite
different behaviour, being proportional to 1=ðpmÞ2: These results are compared with numerical
simulations and experimental measurements in Sections 4 and 5, respectively.
It can be noted that for Poisson natural frequency spacings it was possible to derive an

expression for the nth cumulant of the response, in the form of Eq. (16). For more general natural
frequency statistics a difficulty arises in that the nth cumulant depends upon the jth cumulant
function gj of the underlying point process, for all jpn; as shown for example by Lin [12]. For a
Poisson process only g1 is non-zero, and hence the analysis becomes particularly straightforward.
For independent Rayleigh natural frequency spacings, or GOE natural frequency statistics, the
cumulant function gj is generally non-zero, and is moreover of very complex form for j > 2 (see for
example Eq. (6.4.20) of Mehta [5] for the case of the GOE). For this reason the analysis of this
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section and the previous section is limited to the variance of the response, although at least in
principle an extension could be made to higher order cumulants.

2.5. The spatial factor a

All of the results that have been derived for the relative variance of the response depend upon
the spatial factor a; which is defined by Eq. (14). The term an that appears in this equation is the
coefficient of the nth term in the modal expansion of the response, Eq. (6), and it depends upon
both the nth mode shape of the system and the type of loading considered. For the case of a single
point load an is given by Eq. (4), and hence a ¼ K where K is given by Eq. (19). In conjunction
with the assumption of Poisson natural frequency spacings, Lyon [3] considered the mode shapes
to be a product of sine functions, in which case K ¼ 2:25 is obtained for a two-dimensional system
such as a plate. In contrast, for GOE statistics it is normally assumed that the mode shape at a
fixed point is a Gaussian random variable (see, for example, Refs. [15,16]), in which case K ¼ 3:
With these values it can be seen that the Lyon [3] and Weaver [9] predictions for the relative
variance under point loading are surprisingly similar: Eq. (12) yields 2:25=ðpmÞ for the Poisson
case, whereas Eq. (20) yields 2=ðpmÞ for the GOE case. The present GOE result, Eq. (40), is
2=ðpmÞ þ 1=ðpmÞ2; which is again very similar providing the modal overlap is greater than unity.
For a three-dimensional system such as an acoustic volume, the Lyon value of K is 27/8, and the
difference between the Lyon [3] and Weaver [9] predictions is more marked.
If more than one point load is applied then an becomes

an ¼ ð1=4RÞ
XN

j¼1

fjf
2
nðxjÞ

�����
�����
2

; ð41Þ

where N is the number of point loads and xj and fj are, respectively, the location and the complex
amplitude of the jth point load. If the N complex amplitudes are taken to be random and
statistically independent, with each having an average modulus squared value of unity, then an can
be averaged over all possible realizations of the loading to give

an ¼ ð1=4RÞ
XN

j¼1

f2
nðxjÞ: ð42Þ

By assuming that the mode shapes are statistically independent at the various loading points, it
can readily be shown that

a ¼ E½a2
n�=E½an�2 ¼ ðK � 1Þ=N þ 1: ð43Þ

For the case N ¼ N and the above result yields a ¼ 1: In this case the various predictions of the
relative variance yield very different results: the Poisson result, Eq. (12), yields 1=ðpmÞ; the Weaver
GOE result, Eq. (18), yields zero, and the present GOE result, Eq. (40), yields 1=ðpmÞ2:
In deriving Eq. (42) from Eq. (41), the coefficient an (and hence the energy T) has been averaged

over all possible realizations of the loading prior to considering the ensemble statistics of T : An
alternative is to allow just one realization of the loading for each realization of the random
structure, so that no prior averaging over the loading is performed. If each point load is taken to
have unit amplitude but random phase, so that fj ¼ expðiyjÞ where yj has a uniform distribution
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from 0 to 2p; then it can be shown that

a ¼ ðK � 2Þ=N þ 2: ð44Þ

Clearly Eq. (44) is very different to Eq. (43), and in the limiting case N ¼ N the value a ¼ 2
rather than a ¼ 1 is obtained. This highlights the fact that when considering the variance of the
energy it is important to clearly define the ensemble that is being employed. In what follows ‘‘rain-
on-the-roof’’ is taken to describe the case in which an is averaged over the possible realizations of
the loading, so that Eq. (43) applies.
It has been suggested in the literature (see for example Lobkis et al. [10]) that the GOE result

K ¼ 3 yields an overestimate of K for practical systems. This issue is explored in Section 4 by
comparing relative variance predictions with numerical simulations, and also by computing K

directly for an ensemble of random structures.

3. The point-to-point transfer function

By analogy with the analysis of Section 2.1, the complex point-to-point transfer function given
by Eq. (1) can be rewritten in the approximate form

Hðo;x0; xÞ ¼ HR þ iHI ; ð45Þ

HR ¼
X

n

cngRðon � oÞ; gRðOÞ ¼ 2oO=ð4o2O2 þ Z2o4Þ; ð46; 47Þ

HI ¼
X

n

cngI ðon � oÞ; gI ðOÞ ¼ Zo2=ð4o2O2 þ Z2o4Þ; ð48; 49Þ

where cn ¼ fnðx0ÞfnðxÞ: Eqs. (46) and (48) are in a form amenable to analysis by random point
process theory, but the present aim is not to derive the statistics of H in detail, but rather to
indicate the extent of previous work in this area. Firstly, it can be noted that the first two
cumulants of either HR or HI are given by [12]

k1 ¼ 2E½cn�
Z

N

0

ngðOÞ dO; ð50Þ

k2 ¼ 2E½c2n�
Z

N

0

ng2ðOÞ dOþ E2½cn�
Z

N

�N

Z
N

�N

g2ðO1 � O2ÞgðO1ÞgðO2Þ dO1 dO2; ð51Þ

where gðOÞ represents gRðOÞ or gI ðOÞ as appropriate, and g2 is the second cumulant of the natural
frequency point process. Now given the definition of cn; it is reasonable to assume that E½cn� ¼ 0
apart from the special case where the drive and receive points coincide (i.e., x0 ¼ x). Under this
assumption the first cumulant is zero, and the second cumulant is independent of g2; which implies
that the Poisson, independent Rayleigh spacing, and GOE models of the natural frequencies will
all yield the same result. It can readily be shown that

s2HR
¼ s2HI

¼ E½c2n�pn=ð4Zo
3Þ: ð52Þ

Furthermore, the second order joint cumulant between the real and imaginary parts of the
transfer function can be shown to be proportional to the integral of the product gRðOÞgI ðOÞ along
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the real axis, from which it follows that E½HRHI � ¼ 0: These results are fully consistent with
results derived by Schroeder for the point-to-point transfer function of a room [2]. Schroeder
further assumed that HR and HI are Gaussian, so that a transformation of variables leads to the
results

pðjH jÞ ¼
jH j
s2HR

exp �
jH j2

2s2HR

 !
; pðjÞ ¼

1

2p

� �
; ð53; 54Þ

pðjH j2Þ ¼
1

2s2HR

exp �
jH j2

2s2HR

 !
; ð55Þ

where jH j is the modulus of the complex transfer function and j is the phase. Eq. (53) states that
the modulus squared transfer function has an exponential distribution, from which it follows that
the relative variance is unity. The validity of the Gaussian assumption regarding HR and HI can in
principle be explored by using point process theory to evaluate the higher order cumulants of
these quantities. The fact that E½cn� ¼ 0 implies that the fourth order cumulants can be expressed
in terms of only the first and second order cumulants of the point process, g1 and g2:However, the
analysis becomes very involved for all but the case of Poisson natural frequency spacings, in which
case Lyon [3] has shown that rather than being unity, the relative variance of the modulus squared
transfer function is given by

r2jH j2 ¼ 1þ
K2

pm
; ð56Þ

so that unity is obtained at high values of m: In comparison, the Weaver result [9], Eq. (18), yields
the following for the case L ¼ N ¼ 1:

r2jH j2 ¼ 1þ
ðK2 � 3Þ

pm
: ð57Þ

For a two-dimensional system such as a plate, the value K ¼ 2:25 should be used in Eq. (56),
and K ¼ 3 should be used in Eq. (57)—the coefficients of the (1=pm) term then differ by around
20%, so that the two estimates of the relative variance are fairly similar; the coefficients differ by a
greater amount, 89%, for a three-dimensional system. No further analysis of the point-to-point
transfer function is considered here but a detailed study has been provided by Lobkis et al. [10], in
which it is shown that Eqs. (56) and (57) tend to envelope the true result for a three-dimensional
system.

4. Numerical simulations

4.1. The system considered

In order to assess the validity of the foregoing analytical results, numerical simulations of a
mass-loaded simply supported rectangular steel plate have been performed. The plate is taken to
have plan dimensions 1.35m� 1.2m and thickness 5mm, and ten point masses are attached to the
surface of the plate, each having 1.5% of the total mass of the bare plate. The plate is modelled by
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using the Lagrange–Rayleigh–Ritz technique, with the modes of the bare simply supported plate
employed as basis functions. Typically, a sufficient number of basis functions are included to
allow accurate modelling of at least the first 400 modes of the plate. A constant loss factor Z is
employed, so that the modal overlap factor m ¼ oZn increases linearly with frequency (the modal
density n being independent of frequency for a plate). The frequency dependent results that follow
are plotted as a function of m rather than as a function of o; since the foregoing analysis identifies
m as the key parameter affecting the response statistics. By selecting the location of the masses at
random from a uniform distribution, it is possible to build up an ensemble of random plates so
that the response statistics can be computed; typically an ensemble size of 5000 has been employed
in what follows.

4.2. Natural frequencies and mode shapes

The probability density function (PDF) of the spacings between the natural frequencies is
shown in Fig. 1 for a bare plate, and in Fig. 2 for a mass-loaded plate. An ensemble of one is
involved in each case, since the results have been found by simply computing the first 993 modes
of a single plate. Clearly, the spacings for the bare plate have an exponential distribution, which is
consistent with a Poisson model of the natural frequencies, whereas those of the mass loaded plate
are well approximated by a Rayleigh distribution. These results are consistent with the findings of
random matrix theory [5]. The bare plate is in many ways a special case—it can be thought of as a
series of uncoupled waveguides, with nothing to prevent the natural frequencies of two
waveguides becoming arbitrarily close. The added masses have the effect of coupling the
waveguides, and the veering phenomenon then acts to prevent the occurrence of very closely
spaced natural frequencies; very little coupling is actually required to effect the transition from
exponential to Rayleigh spacings. The bare plate is not considered further in the present work
since Lyon’s theory [3] can be considered to be highly accurate for this case; most real systems will
tend to have Rayleigh natural frequency spacings.
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The correlation function of the natural frequency spacings can be defined as

rs ¼
E½ðzj � %zÞðzjþs � %zÞ�

E½ðzj � %zÞ2�
; ð58Þ

where zj is the jth spacing and %z is the mean value. This is shown in Fig. 3 for the mass loaded
plate, where in this case 2014 modes have been considered in the calculation and the averages have
been taken over j rather than across an ensemble. Also shown in the figure is the correlation
function computed for the eigenvalues of a random matrix with GOE [5] statistics. In some ways it
is surprising that the two results agree so closely, since the matrices governing the plate dynamics
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have a very different form to the GOE. However, this type of agreement is much observed in
practice, although it remains something of a mystery why the GOE results should be so
universally valid [5].
The 55th mode shape of the mass loaded plate (with one particular configuration of the masses)

is shown in Fig. 4. It can be seen that the mode shape has a highly complex spatial pattern, and the
probability density function (taking a fine grid of sample points over the surface of the plate)
appears to be near-Gaussian, as shown in Fig. 5. However, the quantity /f4

j S=/f2
j S

2 is shown in
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Fig. 6 for a number of the modes below j ¼ 300; and it can be seen that the results often fall below
the Gaussian value of 3 (the mean value for modes 50–300 is 2.86). It should be noted that Figs. 5
and 6 relate to the spatial variation of a mode shape on one particular realization of the random
structure, and not the ensemble variation of the mode shape at a fixed point, which is strictly
required in Eq. (19). To investigate whether the mode shape statistics are ergodic, the probability
density function of mode 220 at a fixed point, across an ensemble of plates, is shown in Fig. 7.
Although the result appears to be near-Gaussian, the value of K is actually found to be 2.52, and
repeating this exercise for a selection of modes leads to the results shown in Fig. 8. There is a clear
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tendency for K to be less than 3 (in this case the mean value for modes 50–300 is 2.74), and this
agrees with the findings of Lobkis et al. [10]. Another way to examine this issue is to consider the
way in which K varies with the observation point, for a given mode. A contour plot of K is shown
in Fig. 9 for mode 255, and for comparison, corresponding results are shown in Fig. 10 for the
case in which the point masses are restricted to the left half of the plate. Little can be deduced
from these figures other than the fact that K is a complex function of the spatial position, and
there is a strong tendency for K to be less than 3; in fact the average value of K is around 2.67 for
Fig. 9. The contours of K tend to be aligned to the plate boundaries, which suggests there may be
something special about the fact that the plate is rectangular—it would be interesting for a future
study to consider a less regular shape.
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4.3. Energy variance: rain-on-the-roof forcing

Results for the relative standard deviation rT of the plate kinetic energy are shown in Figs. 11
and 12 for the case of rain-on-the-roof forcing. The energy is a function of frequency, but it is
plotted here as a function of modal overlap: in Fig. 11 the loss factor has been selected to give a
maximum modal overlap factor of 1.6, while a higher loss factor leading to a maximum modal
overlap factor of 6 has been employed in Fig. 12. In each case the frequency range covers the first
416 modes of the plate. In addition to the simulation results the figures show the Poisson
prediction, Eq. (12), the Rayleigh prediction, Eq. (29), and the present GOE prediction, Eq. (40),
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with a ¼ 1 in each case. The Poisson prediction is poor, as would be expected given the fact that
the natural frequency spacings are not Poisson (see Fig. 2). In contrast the GOE prediction is in
very good agreement with the simulations. The difference between the Rayleigh and GOE results
is a measure of the importance of the correlation between the natural frequency spacings—this is
assumed to be zero in the Rayleigh model but, as shown in Fig. 3, r1 has a significant negative
value. The results shown in Figs. 11 and 12 demonstrate that the correlation reduces the variance,
and that this effect becomes more significant with increasing modal overlap. It is logical that the
inclusion of correlations will reduce the variance, since r1 will reduce the likelihood that two
neighbouring spacings will be small, thus reducing the tendency for the modes to bunch and
produce unusually high response levels. It is also logical that the effect will become more
important at higher values of modal overlap, since the average number of modes contributing to
the response at a given frequency is m—the greater the number of contributing modes, the more
significant will be the effect of correlation between their modal frequencies.

4.4. Energy variance: point forcing

Figs. 13 and 14 are similar to Figs. 11 and 12, but in this case the response to point forcing is
shown. The theoretical predictions now have a ¼ K ; where K is taken to be 2.25 for the Poisson
model and 3 for the Rayleigh and GOE models. In this case the three theoretical predictions are
all fairly close, and all tend to overestimate the simulation results. It is interesting to note that
correlation effects are less in evidence than for rain-on-the-roof excitation, since the Rayleigh and
GOE predictions are in close agreement. This can be related to Eq. (29), where the second term in
the integral gives the ‘‘non-Poisson’’ element of the Rayleigh prediction: for a ¼ 3 this has a less
significant contribution than for a ¼ 1; and hence more subtle effects such as correlations can also
be expected to reduce. Physically, the modal contributions to the response in Eq. (3) have random
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amplitudes, and this effect tends to reduce the significance of the detailed spacing statistics of the
modes.
As discussed in Section 4.2, K ¼ 3 is likely to be an overestimate of the spatial factor, and this is

confirmed by the over prediction of the variance shown in Figs. 13 and 14. A revised GOE
prediction is shown in Fig. 15 using the value K ¼ 2:74 based on Fig. 8, leading to closer
agreement with the simulations.
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4.5. Energy statistics

Although only the mean and the variance of the energy were considered analytically in Sections
2.3 and 2.4, the simulations can be used to investigate the energy probability density function.
Results are shown for rain-on-the-roof forcing in Fig. 16 and for point forcing in Fig. 17. In each
case the probability density function is plotted for three values of the modal overlap factor,
corresponding to three different excitation frequencies. It can be seen that the rain-on-the-roof
case is well approximated by a Gaussian distribution, while the point forcing case has more the
form of a Lognormal distribution. It is not possible to give a detailed analysis of these results, but

ARTICLE IN PRESS

0 1 2 3 4 5 6 7
0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

r T
 

Modal overlap m

Fig. 15. The relative standard deviation of energy density rT for Z=0.03, 5000 member ensemble, excitation at a single

fixed point, compared to modified prediction: , mass loaded plate simulation; , single point Lyon prediction;

——, single point GOE prediction, K ¼ 2:74:

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Energy density T normalised to unit mean

P
(T

)

m = 1

m = 5

m = 3

Fig. 16. Energy density PDF, pðTÞ; for a mass loaded plate excited by rain-on-the-roof forces, Z ¼ 0:03; 5000 member

ensemble, at various values of the modal overlap m: ; simulation result, ——, Gaussian PDF.

R.S. Langley, A.W.M. Brown / Journal of Sound and Vibration 275 (2004) 823–846842



some insight can be obtained by considering Eq. (17), which gives the jth cumulant of the response
under the Poisson assumption. For rain-on-the-roof forcing (an ¼ 1) the jth cumulant reduces
relative to the standard deviation in accordance with ðpmÞ�j=2þ1; and thus the response might be
expected to become Gaussian with increasing m: This argument might also be expected to apply to
the point forcing case, but perhaps the behaviour of E½aj

n� with increasing j affects the limiting
process for moderate m: However, Eq. (17) is for Poisson and not GOE statistics, and a detailed
explanation of Figs. 16 and 17 is not available at the present time.

5. Experimental investigation

Experiments have been performed on an aluminium plate of surface area 0.578m2 and
thickness 1.5mm. The plate has an irregular quadrilateral shape, so that no two edges are exactly
parallel, with an approximate aspect ratio of 3:2. The general experimental arrangement is shown
in Fig. 18, where it can be seen that triangular patches of damping material have been added to
the plate: 3M damping foil 2552 was employed, with an approximate area coverage of 35%.
Twelve point masses, each of mass 26.2 g (approximately 1% of the plate mass), were super-glued
to the reverse side of the plate in random positions. These masses could be broken off and
reattached in different positions to form an ensemble of structures—in total 32 different sets of
mass locations were considered. The plate was suspended on soft elastic chords, and the excitation
was applied via an instrumented impact hammer. The response was measured at 22 randomly
located points by using a Polytec OFV 56 scanning laser vibrometer head and an OFV 3001S
vibrometer controller, the output of which was connected to a logging PC. The impact hammer
was triggered automatically by using a solenoid and a pulse generator, so that five impacts (all at
the same position on the plate) could be employed for each of the 22 response measurements
without manual intervention—the five measurements were averaged in the frequency domain to
reduce noise. The kinetic energy of the plate was then deduced by averaging the velocity squared
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response over the 22 measurement points. Repeating this exercise for the 32 different mass
configurations then produced an ensemble of results for the energy of the plate under single point
excitation. The results were processed over the frequency range 250Hz–2kHz, which covers
around 190 modes of the plate.
In addition to the energy response measurements, the power input to the plate was measured. A

power balance then enabled the loss factor Z to be estimated via the formula P ¼ 2oZT : It was
estimated that Z ¼ 0:015; and this result was found to agree with circle-fit damping measurements
on individual modes to around 70.005. This loss factor produces a modal overlap factor of
around 3.6 at the highest frequency considered.
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The energy response of the plate for three of the mass configurations is shown in Fig. 19,
together with measured ensemble average for all 32 configurations. Superimposed on the curves is
the analytical result for the mean (effectively the standard SEA result), which is in good agreement
with the measurements. Note that the limited size of the ensemble produces an oscillatory mean
value rather than a smooth curve. Also shown in Fig. 19 are 99.5% confidence upper bounds
based on Gaussian and Lognormal statistics—clearly the Lognormal result looks more
convincing, in agreement with the results reported in Section 4.5. The measured relative standard
deviation is shown in Fig. 20, both as a raw result and in band averaged form. Two theoretical
predictions are shown, corresponding to Eq. (40) with a ¼ K and K ¼ 2:5 and 3. Clearly, the
result for K ¼ 2:5 is in very good agreement with the experiments, confirming the finding from the
numerical simulations that the value of K is less than the theoretical Gaussian value of 3.

6. Conclusions

Three expressions have been derived for the relative variance of the energy of a system subjected
to harmonic excitation. These expressions are associated with three different models of the
statistics of the system natural frequencies, and are: (i) Eq. (12) for Poisson natural frequency
spacings, (ii) Eq. (29) for statistically independent Rayleigh natural frequency spacings, and (iii)
Eq. (40) for GOE natural frequency statistics. In each equation a ¼ 1 for rain-on-the-roof
excitation, and a ¼ K (where K depends upon the mode shape statistics) for single point
excitation. Eq. (40) provides the first non-zero estimate of the variance for the case of GOE
statistics with rain-on-the-roof excitation, as defined in Section 2.5.
It has been found from simulations that the natural frequencies of a mass loaded plate follow

closely the GOE statistical model, and hence the GOE based variance prediction provides the
closest agreement with simulation results. The assumption of statistically independent Rayleigh
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natural frequency spacings neglects the spacing correlations that occur in the GOE, and this
degrades the accuracy of the variance prediction at high modal overlap.
In line with previous studies it has been found that the value of the spatial parameter K is less

than the theoretical Gaussian value of 3. Lobkis et al. [10] have speculated that this might be due
to the occurrence of complex modes; however the present numerical simulations employed
proportional damping, for which the mode shapes are real, and yet K was still found to be less
than 3. The experimental value was found to be around K ¼ 2:5: Clearly the precise value of K to
be employed in a particular situation remains an open question.
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